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Computation of the Ideal Class Group 
of Certain Complex Quartic Fields. II 

By Richard B. Lakein 

Abstract. For quartic fields K = F3(F7r), where F3 = Q(p) and ir 1 mod 4 

is a prime of F3, the ideal class group is calculated by the same method used 

previously for quadratic extensions of F1 = Q(i), but using Hurwitz' complex 

continued fraction over Q(p). The class number was found for 10000 such fields, 

and the previous computation over F1 was extended to 10000 cases. The dis- 

tribution of class numbers is the same for 10000 fields of each type: real quad- 

ratic, quadratic over F1, quadratic over F3. Many fields were found with non- 

cyclic class group, including the first known real quadratics with groups 5 X 5 

and 7 X 7. Further properties of the continued fractions are also discussed. 

1. Introduction. The quartic fields K = F(,/i), where ,u E F = Q(v=m), 
m = 1, 2, 3, 7, or 11, have many algebraic properties of integers, ideals, and units 
which are closely analogous to those of real quadratic fields. Furthermore, since the 
integers of F form a euclidean ring, one can, by means of a suitable generalization of 
continued fractions, actually calculate the objects of interest in K. 

In addition to the detailed algebraic properties, there is a "gross" phenomenon 
in real quadratic fields with a counterpart in these quartic fields. The fields Q(Vjp), 
for prime p = 4k + 1, appear to have a regular distribution of class numbers. Of 
the first 5000 such fields (cf. [6]), about 80% have class number h = 1, about 10% 
have h = 3, etc. An unpublished table of S. Kuroda [2] gives class numbers of the 
first 10081 1 such fields, up to p = 2776817. The distribution is: 

h 1 3 5 7 9 

% 77.65 11.19 3.80 1.82 1.36 

Now the quartic fields K = F(irr), where 7r = 4a + 1 is a prime of F, also 
have odd class numbers. In a recent paper [4] I used a modified version of the 
classical method for quadratic fields to calculate the class number and ideal class group 
for 5000 such quartic fields over F = Q(i). The distribution of class numbers was 
very close to that of the quadratic case. 

In the present paper we extend the method to the analogous quartic fields over 
F = Q(p). We have calculated class number and class group for 10000 of these fields, 
and extended the calculations over Q(i) to a round 10000 fields. As predicted in 
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[4], the distribution is the same for all three types of fields. We present the results 
of the computations below. In the last section we discuss some interesting properties 
of three continued fractions over Q(p). 

2. The Fields over Q(p). Let F = Q(% ) = Q(p), the "Eisenstein field," where p = 

1/2(-l + \/3), and let E = Z[p], the Eisenstein integers. Let P be a rational prime 
1 mod 12, so P = Nir = a2 -ab + b2, where the Eisenstein prime ir = a + bp 

is normalized so a-1 mod 4, b-O mod 4, b > 0. Then let K = F(V/r). The 
integers I of K have a basis 1, 2 = 1/2(1 + Vi) over E. 

We are concerned with primitive ideals of I, a = [a, , + Q]. By [3], any ideal 
class of K has an ideal a with norm Na = Not less than the "Gauss bound" B = 

D1 /2/8 = 3Pl /2/8. In particular, the splitting prime ideals with norm less than B 
generate the ideal class group. Just as in [4], our method is to count the ideal classes 

generated by these ideals, and the means of classifying ideals is a continued fraction 
expansion of the corresponding quadratic irrational over F. That is, a= [a, j + 2] 

o A = (3 + 2)/oz E K. All calculations are done in terms of the basis 1, p of E. 
It remains to describe the continued fraction (CF). The CF used in [4] for 

calculations over Q(i) was the "nearest Gaussian integer" CF. For calculations over 

Q(p) we use the "nearest Eisenstein integer" CF. Both were defined by Hurwitz 
[1]. The complex plane is partitioned into congruent regular hexagons H(a) centered 

at points a E Z[p]; then "the nearest Eisenstein integer to z" means the integer 

a for which z C H(a). Now H(a) = a + H(O), and, in terms of 1, p, 

H(O) = {x +yp I-1 < 2x -y < 1, -1 Sx-2y < 1,-1 < X + y < 1. 

Thus given z = x + yp, let a and b be the nearest rational integer to x and y, 
respectively, and set z1 = (x - a) + (y - b)p, thus translating z to the parallelogram 

P(0) ={x + yp I -?2 < X < ?, -Y2 < y < ?2 }. 

Then if z1 0 H(O) adjust a + bp to obtain the nearest Eisenstein integer to z. 

Except for the definition of the CF, the fact that the arithmetic is in the form 

a + bp, and the corresponding difference in testing which primes of F split in K, 
the method is essentially the same as in [4]. 

3. Results of the Computation. We computed the ideal class group (and so the 
class number) for 10000 fields K = Q(p, Vir) with prime discriminant ir = a + bp 

1 mod 4, 13 SN7r S 481909. (The case where ir is a rational prime q 5 

mod 12 was excluded, since it is known that h = ?1z(q)h(-3q), where the latter 

are quadratic class numbers.) As conjectured in [4], the distribution of class numbers 

is the same as for real quadratic fields and for extensions of Q(i). 
In Table 1 we list the distribution of class numbers for 10000 cases of each of 

the three types of fields. The quadratic fields, tabulated from [2] , are Q(Vpi), 5 

S p S 225217. The computation over F1 = Q(i) in [4] was extended to 10000 
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TABLE 1. 10000 fields of each type 

h Quadratic over Q(i) over Q(p) 

1 7954 7928 7982 

3 1028 1073 1000 

5 368 383 383 

7 184 170 200 

9 133 126 140 

11 62 65 66 

13 56 47 58 

15 56 45 38 

17 26 39 23 

19 19 20 20 

21 22 15 23 

23 8 12 11 

25 17 11 12 

27 9 11 14 

29 8 4 4 

31 1 11 5 

33 7 6 2 

35 8 7 3 

37 3 2 3 

39 4 7 - 

>40 27 18 13 

cases, F1(<rr), 17 < Nrr < 482441. Tables 2, 3, 4 give the distribution for 1000 
fields at a time for each of the three types. 

It now seems reasonable to expect the same distribution for fields quadratic over 

Q(V-m), m = 2, 7 or 11. 
The results on class groups are quite interesting. Of the 10000 quadratic fields, 

only 7 have a noncycic class group, namely C(3) x C(3). Of the fields over Q(p), 
there are 22 with noncycic group, all having two factors divisible by 3. For 19 fields 
the group is C(3) x C(3); for 2 fields it is 6(3) x C(9); and one field has C(3) x 
6(15). There is as yet no explanation for this large number of noncycic cases. Of 
course the base field F3 = Q(p) contains the cube roots of 1, but this relates to 
cubic extensions of F3. 

Of the fields over Q(i), 4 have group C(3) x 6(3); and one, P = Nr= 
369913, 7r = 363 + 488i, has group C(5) x C(5). The ideal classes containing 
prime divisors of 1 + 2i and of 3 - 2i are independent and each of order 5. There 
are six subgroups of order 5, each containing prime divisors of several Gaussian primes 
below the "Gauss bound." 

While the group 6(5) x C(5) was known to occur for complex quadratic fields- 
see [5, p. 162] - there was no real quadratic field of prime discriminant known to have 
a noncyclic class group involving anything but the 3-primary part of the group. This 
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TABLE 2. Quadratic fields by thousands 

h 1 2 3 4 5 6 7 8 9 10 total h 

1 816 806 798 777 787 776 817 794 788 795 7954 1 

3 101 112 93 116 101 109 101 89 101 105 1028 3 

5 35 35 41 34 38 39 31 48 35 32 368 5 

7 22 14 22 22 20 15 11 15 29 14 184 7 

9 9 10 15 16 16 18 12 13 13 11 133 9 

11 6 4 3 6 10 6 3 9 7 8 62 11 

13 5 3 6 6 8 8 2 12 2 4 56 13 

15 2 5 6 3 4 8 10 9 3 6 56 15 

17 1 1 5 2 2 4 2 1 4 4 26 17 

19 - 2 3 3 3 1 - 1 2 4 19 19 

21 1 - 1 3 2 4 3 2 2 4 22 21 

23 - 2 - 1 1 - 2 - - 2 8 23 

25 - 1 3 3 3 1 3 - 2 1 17 25 

27 1 2 - 1 - 2 - 1 - 2 9 27 

29 - - 1 1 2 1 - - 1 2 8 29 

31 - - - - - - 1 - - - 1 31 

33 - - - 2 - 1 - - 2 2 7 33 

35 - 1 - - 1 3 - 2 1 - 8 35 

37 - 1 - - 1 - - 1 - - 3 37 

39 - - 1 - - 1 - 1 - 1 4 39 

43 1 - - - - - - - 1 - 2 43 

45 1 - 1 - 2 1 - 1 2 8 45 

47 - 1 - - - - - - 1 47 

49 - 1 - - - - - - 1 49 

51 - 1 - - - - 1 - 2 51 

55 - - 1 - - - - 1 55 

57 1 - - - - - 1 57 

59 - - - 1 - - 1 59 

61 - - - - 1 1 2 61 

63 1 - - - 1 2 63 

65 - - - 1 1 65 

77 - - 1 - 1 77 

85 - - 1 1 85 

87 1 1 - 2 87 

153 1 1 153 

led us to check the quadratic fields in Kuroda's table [2] with class number divisible 
by a square greater than 9. In the range p S 2776817 we found 9 fields with group 
C(3) x C(9); 2 fields with C(3) x C(27), and 4 more interesting cases: 

p class group of Q(/'p) 

1129841 C(5) x C(5) 
1510889 C(5) x C(5) 
1777441 C(5) x C3(15) 
2068117 C(7) x C(7) 
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TABLE 3. Quadratic over Q(i) by thousands 

h 1 2 3 4 5 6 7 8 9 10 total h 

1 830 805 792 798 769 780 782 800 781 791 7928 1 

3 100 108 102 100 115 108 110 107 112 111 1073 3 

5 35 30 48 42 43 34 34 33 40 44 383 5 

7 14 17 16 22 16 19 18 16 19 13 170 7 

9 5 8 12 12 19 13 17 10 17 13 126 9 

11 6 8 5 3 6 13 7 8 4 5 65 11 

13 3 8 8 3 8 6 3 2 3 3 47 13 

15 2 6 5 2 6 6 6 5 3 4 45 15 

17 3 3 4 5 4 5 6 3 2 4 39 17 

19 - - 2 3 1 7 4 1 1 1 20 19 

21 - 1 - 2 3 - 1 2 3 3 15 21 

23 1 - 2 1 1 2 - 1 2 2 12 23 

25 1 - - 1 1 1 1 1 5 - 11 25 

27 3 - 1 1 - 3 1 2 - 11 27 

29 1 1 - 1 - 1 - - - 4 29 

31 - 1 1 1 2 3 2 1 - 11 31 

33 2 - - 1 1 - 1 - 1 6 33 

35 - 1 3 - - 1 - 2 7 35 

37 - - - - 1 - - 1 2 37 

39 - 2 1 - 2 2 - - 7 39 

41 - - - - - 1 - 1 41 

43 1 - - - - - 1 2 43 

45 - - 1 - 1 1 - 3 45 

49 - - - - - 1 - 1 49 

53 - - - - 2 - - 2 53 

57 1 1 - - 1 - - 3 57 

59 - 1 - - 1 59 

61 1 - - 1 61 

63 - - 1 1 63 

65 1 - 1 65 

69 1 1 69 

85 1 1 85 

Just as the first field with C(3) x ((3) is p = 32009 = 1792 - 32, the first 
occurrence of C(5) x C(5) is for p = 1129841 = 10632 - 128. (See [5, pp. 157, 
1611.) 

Table 5 lists the fields among each 10000 cases with noncyclic class group. 

4. Remarks on the Continued Fractions. Let the CF for the basis number 
2 begin Q = ao + l/xi. In all 20000 cases computed, the CF of xi is purely 
periodic with a complete quotient xm = (b + 92)/D, where r is a unit (root of 1) 
of F, and xm+1 = Dxl. Then calculating the denominators qn of the conver- 
gents of the CF for xi, we obtain a unit E1 = qmxm +1 + qm-l This unit is 
the fundamental unit Eo in all cases computed, except only three cases. It appears 
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TABLE 4. Quadratic over Q(p) by thousands 

h 1 2 3 4 5 6 7 8 9 10 total h 

1 833 799 798 810 814 785 785 788 785 785 7982 1 

3 92 94 111 96 87 114 89 90 114 113 1000 3 

5 43 45 32 37 34 39 43 41 36 33 383 5 

7 16 20 21 15 19 17 23 23 23 23 200 7 

9 6 14 11 15 14 13 16 17 13 21 140 9 

11 5 7 8 4 8 5 14 10 2 3 66 11 

13 2 9 9 6 8 5 4 6 3 6 58 13 

15 1 5 3 2 2 4 6 4 6 5 38 15 

17 1 3 1 3 2 4 3 3 2 1 23 17 

19 - 1 3 2 1 1 7 3 1 1 20 19 

21 1 2 1 3 2 4 3 2 4 1 23 21 

23 - - 3 1 - 1 3 2 1 11 23 

25 1 - 1 4 1 2 1 - 2 12 25 

27 - - 2 4 2 4 - 2 14 27 

29 - 1 - 1 - 1 - 1 4 29 

31 1 1 1 1 - - 1 - 5 31 

33 1 - - - - - 1 - 2 33 

35 - 1 - - 2 - - 3 35 

37 - 1 - - 1 1 3 37 

41 - 1 - - 2 - 3 41 

43 - - - 1 - 1 43 

45 - 1 - - - 1 45 

49 - - - - 1 1 49 

51 - - - 1 1 51 

53 1 - 1 - 2 53 

57 - - 1 1 57 

59 - 1 - 1 59 

63 1 1 2 63 

that the "nearest integer" CF for real numbers, and its two complex generalizations, 
yield E1 = Eo in all but the following exceptional cases: 

ITQE Eo El 

over Q: 5 lh(l + Q E2 

over F1: 1 + 4i h(1 +E2r) 
5 + 4i ?(l + )i +( + i)Q E2 

1 + 2i (1 + v/ir)/(l + i) Q -iE3 

over F3: 1 + 4p ?(1 + Vr) -pEo 
5 + 4p (l + n)E 0 

There seems to be no reason for these exceptions, other than the fact that they are 
the smallest cases. 
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TABLE 5. Noncyclic class groups 

Real quadratic fields Q(v'p) with group 3 X 3: 

p 32009, 62501, 114889, 142097, 151141, 153949, 220217 

Quartic fields F1(y;i): 

P = Nir T group 

54713 107 + 208i 3 X 3 

201881 91 + 440i 3 X 3 

369913 363 + 488i 5 X 5 

466553 683 + 8i 3 X 3 

467497 251 + 636i 3 X 3 

Quartic fields F3(v/in) with group 3 X 3: 

P-N7r r P 7r P ir P ir 

41617 -59 + 168p 175333 37 + 436p 287233 -59 + 504p 394489 -527 + 168p 

73849 185 + 312p 190669 477 + 380p 299317 553 + 12p 434221 581 + 716p 

83269 285 + 292p 198109 353 + 500p 360973 -399 + 292p 449077 773 + 356p 

120397 37 + 364p 278149 105 + 572p 361561 525 + 656p 452989 -275 + 492p 

160201 -71 + 360p 283909 -323 + 292p 362473 661 + 144p 

Quartic fields F3(Nnn with other groups: 

P N7r 7r group 

298621 -315 + 316p 3 X 15 

363157 693 + 292p 3 X 9 

452629 -255 + 508p 3 X 9 

In [4] there were two fields over F1 where the CF did not identify two 
equivalent ideals as being in the same ideal class. We now have 6 examples of this 
shortcoming of the CF's. There are 4 fields F1(s/iT), with P = Mr = 2633, 210209, 

316073, 343393; and 2 fields F3(Ar), with P = N7T = 35521, 371281. In each 
case there is an ideal class containing two (equivalent) ideals whose CF periods are 
distinct; and likewise two distinct periods representing the conjugate (inverse) class. 

For comparison we reran the first 1000 fields over F3, using two other CF's. 
Let's call the original CF tl, based on the hexagons H(a) = a + H(O). Correspond- 
ing to the parallelograms P(a) = a + P(O) is the CF P, and finally the CF R, 
based on rectangles R(a) = a + R(0), where 

R(O) = {x +yp 1 -?% y <?, -1 2x -y < l}. 

The fundamental polygons for the three CF's have the same area, only the diameters 
of it, R, then P are successively larger. 

Both R and P settled the 833 cases with h = 1. However, of the 167 cases 
with h > 1, there were many cases for which the CF's gave distinct periods for 
equivalent ideals. In fact, R failed in this way for 49 fields, and P failed for 55 
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fields-out of 167 cases! In contrast, If failed only twice in 2018 cases with h > 1. 
As a final comparison we tabulated the length m of the primitive partial peri- 

od of Q, using the three CF's. Denote P1, P2, P3 the period length using algo- 
rithm H, R, or P, respectively. In 812 cases P1 = P2 = P3; in 188 cases either 
P2 or p3 >p1. More precisely, P1=P2 <P3 inl 175 cases, P1 <P2 =P3 in 3 
cases, p1 < P2 < p3 in 7 cases, and P1 = P3 < P2 in 3 cases. The pi's ranged 
between 1 and 62, and maxpi - p1 < 3. 

The computations were done from January to March 1974 on the CDC 6400 
at SUNY at Buffalo. 
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